澳门赌场招聘-赌场有哪些_免费百家乐追号软件_全讯网最新资讯网址 (中国)·官方网站

Research News

Prof. Wen-Jun Li's group at School of Life Sciences isolated microorganisms from hot spring microbial mats with a “combination” strategy: a perspective of microbial interaction

Source: School of Life Sciences

Written by: School of Life Sciences

Edited by: Tan Rongyu, Wang Dongmei

Microbes are creatures with the widest living range and the most abundant biological diversity on the earth. They are important material basis for human survival and important source for biotechnology innovation. However, due to the limited knowledge on the majority of microbial species, the “Great Plate Count Anomaly” is still a puzzle up to now, and hitherto uncultured microorganisms are vividly imaged as microbial “dark matters”. We do, however, understand that these “dark matters” play unprecedented roles in carbon and nitrogen cycling, novel natural products chemistry and in maintaining the balance of the environment. To culture and effectively describe the vast majority of microorganisms has always been a challenging subject in microbiology research, as biologists often say, “To really know them, you have to grow them”.

In the new study, to cultivate previously uncultured Chloroflexi microorganisms, total 26 hot spring microbial mat (HSMM) samples were collected from Yunnan and Tibet hot springs, and a co-occurrence network analysis was conducted based on the 16S rRNA genes high-throughput sequencing. Results show peripheral nodes in the network comprised of genera Chloroflexus (13.9%), Thermus (11.05%) and Roseiflexus (8.44%), and members with low abundance is the key nodes. Among these key nodes, genera Tepidimonas, Geobacillus, Meiothermus and Sphingomonas have been previously isolated. After screening tests, strain Tepidimonas SYSU G00190W (190W) was confirmed as a growth promoting strain. Spent culture medium (SCM) based on 190W was prepared and members of the phylum Chloroflexi were frequently isolated on the SCM plate, novel isolates related to Roseiflexus spp. and Chloroflexus were isolated only on the SCM plates, most of these isolates represents the novel species in the phylum Chloroflexi, two of them are distinct lineages in the phylum Chloroflexi.

Fig. 1. Overview of the sampling sites and the workflow for the network-directed isolation procedure from HSMMs. (a) Location of the sampling sites; (b) Representative samples (Y1, Y2 and Y3 from Yunnan, and A96 from Tibet hot springs) that are used for isolation; (c) Workflow use to predict key-node taxa and screening for growth-promoting strains. SCM plate was effective in the isolation of targeted microorganisms from the HSMMs.

As the growth-promotion on Chloroflexi spp. was observed with SCM, we hypothesized that Tepidimonas sp. may have a strong ability to synthesize and excrete compounds that facilitate the Chloroflexi bacteria. Subsequently, non-targeted extracellular metabolomes was conducted on 190W and 83 low molecular weight organic substances (LMWOS) were detected to significantly accumulated during its growth. Representative LMWOS was further tested on the newly isolated strains, result showed that pantothenic acid (VB5) and 3-indoleacetic acid (IAA) facilitate growth of all the tested strains. Imidazole acetic acid and deoxycytidine showed enhance growth to Chloroflexus strains while putrescine improved the growth of Roseoflexus strains. Further, uracil, cytosine and adenine also facilitate the growth of other Chloroflexi.

This work provides strong experimental evidence that key node bacteria is critical for rapid and easy cultivation of hard and slow-growing strains from HSMMs in the laboratory condition. The study further provides an idea for cultivating of unculturable microorganisms in other environments.

Detailed information could be found at DOI: https://doi.org/10.1038/s41522-020-0131-4

The research team of Prof. Wen-Jun Li at School of Life Sciences of Sun Yat-sen University have been focusing on the extremophiles and their ecology for more than twenty years. Details of his previous researches could be found with following information.

1. Insights into ecological roles and evolution of methyl coenzyme M reductase containing hot spring Archaea.

https://www.nature.com/articles/s41467-019-12574-y

2. Genomic inference of the metabolism and evolution of the archaeal phylum Aigarchaeota.

https://www.nature.com/articles/s41467-018-05284-4

3. Discovery of Druggability-Improved Analogues by Investigation of LL-D49194α1 Biosynthetic Pathway.

https://pubs.acs.org/doi/abs/10.1021/acs.orglett.9b00610

4. Discovery and Biosynthesis of Atrovimycin, an Antitubercular and Antifungal Cyclodepsipeptide Featu-ring Vicinal-dihydroxylated Cinnamic Acyl Chain.

https://pubs.acs.org/doi/abs/10.1021/acs.orglett.9b00618

5. Update on the classification of higher ranks in the phylum Actinobacteria.

https://www.ncbi.nlm.nih.gov/pubmed/31808738

Link to the Prof. Wen-Jun Li's Lab: http://liactlab.sysu.edu.cn/index-en.html

百家乐l23| 百家乐官网怎么打啊| 上市百家乐官网评论| 永利高百家乐开户| 八卦与24山| 迷你百家乐的玩法技巧和规则| 真人百家乐官网网络游戏信誉怎么样| 百家乐官网娱乐送白菜| 模拟百家乐游戏软件| 大发888博彩论坛贴吧| 皇冠足球现金网| 百家乐官网赌博故事| 澳门百家乐官网网络游戏信誉怎么样| 全景网百家乐的玩法技巧和规则| 威尼斯人娱乐城老品牌lm0| 卢氏县| 网上百家乐官网群的微博| 百家乐官网庄闲桌| 青鹏棋牌官网下载| 百家乐官网号破| 百家乐用品| 百家乐楼梯缆| 阳山县| 百家乐追注法| 百家乐官网五式缆投法| 百家乐博彩金| 盛大69棋牌游戏| 金花百家乐官网的玩法技巧和规则| 大发888游戏平台dafa 888 gw| 伟易博百家乐官网娱乐城 | 大发888国际娱乐net| 百家乐怎么押钱| 如何玩百家乐官网扑克| JJ百家乐官网的玩法技巧和规则| 大发888官方网站下载| 红宝石百家乐官网的玩法技巧和规则 | 伯爵百家乐官网娱乐网| 3u娱乐城| 大发888在线| 成人百家乐的玩法技巧和规则| 百家乐官网永利娱乐场|